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I. Introduction

We consider a discrete time single server queueing system that is fed by N indepen-

dent input streams (Fig.l). The service time, T, is constant and equal to one, which is the

* distance between successive arrival points. The first in - first out policy is adopted and

the buffer size is infinite.

When successive arrivais in each input stream are independent, the above queueing

system has been studied, [ 11, and the mean time, D1, that a customer spends in the system

was then found to be given by the following expression.

N N¢X nXN

n=1 n>n
D1 = 1+ N N (*)

- n=l n=1

where oxn is the probability of an arrival at the input of the queue, and corresponds to the

mean arrival rate of the Bernoulli process that describes the arrival streams.

If the arrival process is a first order ergodic Markov chain with state space S {0,

1 }, where 1 corresponds to an arrival and 0 to the absence of such an event, then the

average time, DM, that a customer spends in the system is given by the expression below,

t 21, 131.

N rtn 
. j 1 + --1 + I'm

n= 1 m ,n 1/n 15'1

DM + N N

n-I n-l

where ' P( 1/I) - P (1/0) and where (f.n is the arrival rate ,iven by the expression

V t m .r V o t ' ' :. " t " - - • % '"l ' , ,. - - -



P(1/0)

P( /) denotes conditional probability.

In this paper, it is assume that each input stream is described by a finite-state Mar-

kov chain. The cardinality of the state space of the Markov chain associated with the i th

stream is denoted by M i. The arrival process of each input stream corresponds then to a

mapping from a finite-state Markov chain onto the set {0,1}, where 1 represents a single

arrival and where 0 represents no arrival. In this case, the average time that a customer

spends in the system is obtained from the solution of M1xM 2x ... XMN linear equations.

Clearly, the Markov arrival system described in [2] is a special case of the general

system considered in this paper. In [2], the underlying Markov chain has two states only,

and actually coincides with the arrival process. The closed form solution obtained in [2],

for the average time that a customer spends in the system, does not extend to the case

where multi-state Markov chains are present. The two state Markov model gives rise to a

second order equation, whose roots are used in the derivation of the closed form solution.

This procedure does not extend to a larger state space Markov model, since then expres-

sions for the roots of high order equations would be needed. 1"SP,,CTr,

6 The queueing system with Bernoulli arrivals, is also a special case of the system

considered in this paper. In that case, the arrival process coincides with the underlying

Markov process and the state transition probabilities are properly selected. Then, D1 can

be derived from the solution of 4 linear equations. .'.i_-.-7

The system considered here has several applications. For example, the single server

* may correspond to some central node which accepts and processes packets originatin,

from several random-access communication systems. Each input stream represents then

.3



the output process from a random-access communication system: that is, the process of

the successfully transmitted within the latter system packets. Then, the per stream Ber-

noulli model is unrealistic, and the two-state Markov model can be inefficient, 141. On

the other hand, a three-state Markov model per input stream may represent an efficient

approximation and may be intuitively pleasing. For example, in synchronous packet

random-access systems, the three states may correspond to the idle versus success versus

* collision channel states per slot. Each input stream is then governed by this three-state

process, whose characteristics are induced by the deployed random-access algorithm.

The above three-state process is not necessarily Markov, but can be closely approximated

, by a Markov such process, especially in the presence of heavy traffic, 14].
-"

9

II. The general queueing system

The general configuration of the problem that will be described in this section

appears in Fig 1. The system consists of N input streams which feed a single server. The

- •server has an infinite capacity buffer.

The arrival processes {ai}j_ o, i = 1, 2, .- , N, are assumed to be synchronized

discrete time processes, and at most one arrival can occur in each input line per unit time.ii
The time separation between successive possible arrival points is constant and equal to

one. The arrival processes {aj}j 0, i = 1, 2, , N, may represent the output processes

of multi-user random access slotted communication networks, where the arrival points

coincide then with the ends of slots. It is obvious that in the latter system, the condition

of ha,. ing at most one packet arrival per input stream and per unit time is satisfied.

4
qEd



The first in - first out (FIFO) policy is adopted and the service time is assumed to be

constant and equal to the distance separation of successive arrival points. Mor2: :han one

arrivals (from different input streams) that occur at the same arrival point are served in a

randomly chosen order. In the packet communication system, the service time policy

implies that arriving and departing packets have the same length.

Let {x}j>0 denote a discrete time ergodic Markov process associated with the th

M}.input stream, with finite state space S' = { i1, • ' I. Let also ai be a stationary map-

ping rule from the set Si onto the set {O, 1 }, where 1 corresponds to an arrival and 0 to

the absence of such an event. Then the arrival process of the i th input stream isI-

I a,) {a (x,)}j 0  = {a (x ° ), ai (xit), ' ' ' }I

From the description of the arrival process it is implied that successive arrivals from the

same input stream are not independent, but they are governed by an underlying finite

state Markov chain, {x) }j> , and a stationary mapping rule ai.

_*,.• In this system, it is assumed that the processes {x}Jj>0 , i = 1, 2, • • , N, are mutu-

ally independent and thus the arrival processes {ai }j j 0, i = 1, 2, . N, are also

independent. If {bJ}j>0 = {b° , bt , ..- } is the process that describes the total arrivals

occuring at a single arrival point, then

N' ~b j =  a (x i ) j 0 1 2 .
j) j, , ,2 (2)

andb j {0, 1,2, ,N}.

Referring to the example of the output process of a multi-user random access com-

nunication network, we may define {]}j G to be the process that describes the state of

the channel at the end of a slot. Let us consider a ternary channel state space

'5
ii
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Si{o1}- S -{0, 1,21
* where, 0, 1 and 2, respectively, denote that 0, 1, or more than 1 packets attempted packet

transmission in a single slot. Since a packet appears in the output process only if it is the

only one transmitted within the corresponding slot, the arrival process {a?}3 >0 can be

clearly described via the mapping

1 if i =I*- ai£) = if i= O, 2
a• 0 if xi  ,

The process {k }>j0 is controlled by the deployed random-access algorithm, and is

generally non-Markov. However, this process can be approximated by a Markov process

{xlj, 0 which has the same state space as {fl}j>_O and is ergodic within the stability

region of the random-access algorithm. Simulation results, [4], have shown that, for at

least a class of random-access algorithms, the three-state Markov model provides a good

approximation of the process I}_>0.

Il1. Analysis of the queueing system

This section is devoted to the analysis of the system described in the previous sec-

* tion. The main result of the analysis is the derivation of the linear equations whose solu-

tion give the mean number of packets in the system. This result, in conjunction with

Little's formula, provide the mean time that a packet spends in the system.

Let 7r(k) and p,(k, j), k.j c S , denote the steady state and the transition probabilities

of the ergodic Markov chain. { x } 0, i - 1, 2, , N. Let also p(. .) denote the joint

probability that there are j packets in the system at the n'h arrival point (arrivals at that

*O point are included) and the states of the Markov chains are y,, y,. ' YN, where

y~~=1 .,v, - The vector - describes the state of a new ergodic Markov chain that

6



is generated by the N independent Markov chains described before, with steady state and

transition probabilities -r(-y-) and pcx, y) respectively, and with state space

- I 2' NS=S xS x ... xS

0 The operation of the system can be descibed by an N + 1 dimensional (infinite state

space) Markov chain imbedded at the arrival points, with state space T = ( 0, 1, 2,

" )x S and state probabilities given by the following recursive equations

N

P"O y) p (jI +1-Xai(xi);ix) p(x, -y) , jN+l

Eizl

or (3)'-
j+i

p no~y)= E Z pn- (kx)p(-x) + I pn-I(0;x) p (X,Y) , 0_jN
k=I K r; Fj

where

N

FV = I X' = ( x X2 , ... XN) E S • E ai(x i)=v} (4)

i=1

* There are totally M xMzx "-- xMN equations given by (3) for a fixed j and all y c S,

where Mi is the cardinality of Si, i = 1, 2, , N.

The original assumption concerning the ergodicity of the Markov chains associated

with the input streams implies the ergodicity of the arrival processes {al}l 0 , i ,

* *,N. The latter together with the well known condition, [51,

N

E E i(xi : ai(x) =l) < 1 (5)

i=l X, S'

imply that the Markov chain described in (3) is ergodic and there exist steady state

* (equilibrium) probabilities. Thus, we can consider the limit of the equations in (3) as n

approaches infinity and obtain similar equations for the steady state probabilities.

7
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By considering the steady state probabilities given by (3) and manipulating thle

resulting, equations, as it is shown in Appendix A, we obtain the following system of

linear equations

N

where P(z ; 5y) is the generating function of the steady state distribution of the N+1I

* dimensional imbedded Markov chain, given in Appendix A.

From the independence of the Markov chains associated with the input streams and

the state description of the imbedded N+1 dimensional Markov chain, it is obvious that

IfN N

H(X = t1 r(xi) , p(-X, -Y) = HJ pi(xi, yd) (7)

N

*p(O ; -X) = Po f 7ri(xi) (7b)

If P(z) is the generating function of the distribution of the number of packets in the sys-

* tem, then

P(Z)X pOj)z : Y,2 poj; 57)Zj= P(z;57) (8a)

and

P Z P(z ; -) (8b)

where P (z ,y), y' c S, can be derived by differentiating (6) and are given by

N

P'(z ~ ~ Y (V ) "2P(z . ) (Z-lI)p(O ) I +
i= c ~ F,

+ z P (z X) +pNO-x)IjP(x' Y) (9)

for -Y E S.



Since P (1) is the average number of packets in the system. Q, from (8b) we have that

Q= P (I ;-) (10)
- yES

P'(I ; -), yE S, are in fact the solutions of the following Mix ... xMN dimensional

linear system of equations, which are obtained from (9) by sctting z= I

P (I ;y)= (v-1) P(1 ; -)+ P (I ;-) + p(O; p(--y) , FC (11

v=O xE F,

lpwhere

N
P( ; x) = T(x) = F- 7Ui(xi) (12)

,, i=1

The Mix M.. MN linear equations with respect to c S that appear in (11) are

linearly dependent. This is usually the case when the equations have been derived from

the state transition description of a Markov chain. By following the procedure that is

shown in Appendix B, we obtain an additional linear equation with respect to

P (I ": y). y E S, which is linearly independent from those in (11) and is given by

S [2(v-1)P'(I ;ix)+(v-1)(v-2)P(1 ;x-)+2(v-1)p(0; =)] 0 (13)
' v=O i EF

In appendix B we also calculate the steady state probability that there is no packet

in the system, denoted by p0. As it was expected it was found that

N
PO=  -  E 7T(xi':a,(x i) = 1)  (14)

i1l X E S'
I .,

3v substituting (7b), (12) and (14) into (11) and (13) and solving the MIx ... xMNN

dimensional linear system of equations that consists of (13) and any MIx ... xNl - I

equati ,ns taken from (11), we compute P( I X) , .x F S. Then. the average number of

packets in the system can be computed by (10).

9
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The average time, D, that a packet spends in the system can be obtained by using

Little's formula and it is given by

D Q
N

E 71i (xi ai(xi) = 1) (15)

i1l X E S'

The denominator in the above expression corresponds to the total input traffic to the

queueing system.

IV. Conclusions

C. The main result of this paper is a method to calculate the mean time that a customer

spends in the system, for a queueing system with many input streams and ariivals that

depend on the state of arbitrary Markov chains associated with the input streams. That

result can be obtained by solving Mix ... xMN linear equations, where M i is the cardi-

nality of the Markov chain associated with the it h input stream.

As a possible application, it has been demonstrated how the queueing system under

consideration can approximate a queueing system fed by the output processes of indepen-

dent multi-user random access communication networks.

02
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Appendix A

In this section we derive the linear equations that are given by (6). W write the

steady staty probabilities (under ergodicity) by considering the limit of (3) as n---)- and

o !obtain

N
,* p(j ; ) p (j+1 - ai(xi) ; -) p (x, y) , j N+1

X ES i= 1

*• j+1
p (J;) I E p(k;x-)p (,y) + I p(0;x)p(-,T) ,0<j<N

k=1 TEEkRFJ

If P(z ; y) is the z-transform of the joint probability distribution that there are j packets in

, Ithe system and the Markov chain is in state 7, defined by

P(z ; -) = p(j ;-)z p = I (J ;Y)z'
j=0 j=0

* then, from (A,) we obtain

N 00NP(z ;Y-)=l P(J ;Y)z j + Z p(j+l - Z2 ai(xi) ; x) p(- , y) zj

j=0 j=N+I l i=1

* N N! =Zp(J;)zJZ Z } p(j+l -v-) p(x, -)z'

j=0 v=0 j=N+1 jEF,

N N 00

y) k v-I

j=O v=r0 k=N+2-v i E F

j=0 v=0 i F, k=N+2-v

N N N+l-v
" )7 + I- v I " p(k ,' ' p( ,-)

J () V- F L k=O

13
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N N

J=O i i:F

N N Ni-I-v

-~~ z P~ P, Y, p (k.x~z x v

F,) V=O ~F, k=I

N N

J-0 V=O x E F,

-) z p(k-X) p(\.v

v cF k=l V=-O

N N

J) V=4) F

N N-+ N

zv p(k X) APx y) + E j 11k p(

v-0 k F F k~ j-k- ,

N N-

- ~~~p(k : x)p~x % x \

j-O k- I vF,:\ F

N

v' --4 x F,v

N j-1
-Y E y i X * ~

j=O k,~ I
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Appendi B

In this section we derive the additional equation that is shown in (13). We start by

adding all the equations that are given by (9) and by using (8b) we obtain

(z [ (v-1))Z- 2 P(z'.-)+(z-l)p(O':-)+z v -I p ' (z ' X)+p(O X)]
-vO0 kcF

Bv adding

* N
zP(z)-z Y P(z;)=O

V=O x EF,

in the first equation and rearranging we obtain

.- ", - A (z )

.-z

v. here

A(z)= " -I)zV-2p IP(z i)+z-1)p(O-)l+z' I' p(z ' i ) +p(O " -) -zp '(z;T]
• ','1-0 , F

Since, P(I) is the average number of packets in the system, which is finite if (5) holds,

* and since l-z = 0 for z=l, we compute P'(1) by applying L'Hospital's rule to (B1) thus

dA(z)'dz,P P(z) Il - z=l - dA\(z},'dz I z=1 (B2)

d( 1-z)/'dz

4 From condition (132) and by using (8 b) we obtain (13),

To calculate the steady state probability of having no packet in the system we

* proceed as before. We start by adding the equations given by (6) and by using (8,) we

obtain

N
",,gP(z)= z' v' - 1 [P(z' -) -z- ) p-(0:, )l

x F,

1y adding

'1'5



- - - - - -

N
zP(z)-z - P(z )= 0

v=O KF,

in the previous equation and rearranging we obtain

B (z)
o P(z) - (-z (B3)

where

NB(z)= _. . (zv- -Z)[ P(z; + (Z-1)p("NO

*t v=0 TcF,

Since P(1) = 1 <,, and 1 - z = 0 for z = 1, we compute P (1) by applying L'Ilospital's

rule to (B3); thus

'- dB(z)/dz
I" 1 = P(z) z=1 = {z 1 - dB(z)/dz Iz= (B4)

d(1-z)/dz

* From condition (B4) and by using ( 7 b) we have

N N N
PO E I - Vr(-)= I Y. v F1 V -- i(xi )

1-0 i rF, v=0 F F i=lI

* The previous expression after some manipulations results in (14).
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